Ulana Documentation

Overview:

Unicellular Long-read Assembly aNd Annotation

Ulana is a bacterial genome assembly and annotation pipeline using Fast, HAC or SUP ONT basecalled data from MinION and Flongle flow cells. The pipeline will 1) filter reads using NanoFilt 2) create a draft assembly using Flye 3) polish the draft assembly using Medaka 4) annotate the polished assembly using Prokka 5) summarize the Prokka output and provide a tentative 16S + rpoB + dnaA identification using ropro.

ulana:

vt. To plait, weave, knit, braid; plaiting, weaving. Also unala, nala, unana. Mea ulana 'ia, plaited or woven material, textile. Mea ulana lole, weaver (Isa. 38.12), loom. (PPN langa.)

Github:

ulana: https://github.com/ehill-iolani/ulana.git

Docker:

ulana: https://hub.docker.com/repository/docker/ethill/ulana

General setup instructions:

Ulana installation:

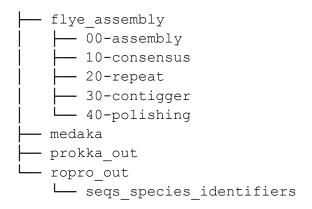
- 1) Open the terminal on your computer
 - a) Search "terminal" on the search bar of your computer
- 2) Paste this line into your terminal and wait for your download to finish:

docker pull ethill/ulana:latest

Running an ulana container:

- 1) Go to docker desktop and do the following:
 - a) Select images from the left hand sidebar
 - b) Find the image labeled "ethill/ulana:latest"
 - c) Select the "play" triangle on the far right of the image
 - d) Drop down additional settings
 - i) Give the container a name
 - ii) Select the "..." under "host path" to specify where the data is stored
 - iii) Input the following under "container path" /home/data
- 2) Select "run"
- 3) In your terminal paste this line which has been MODIFIED to match your container name docker exec -it yourcontainername bash

Pipeline specific instructions:


IMPORTANT

Make sure to adjust the switches in the code ACCORDINGLY for YOUR analysis

- -h help (prints this message)
- -∨ version
- -q minimum quality score; default is 10
- -1 minimum read length; default is 1000
- -c number of cores to use; default is 4
- -i name of input fastq file containing reads
- -ь type of basecalling used; the options are: r941_min_fast_g507, r941_min_hac_g507, r941_min_sup_g507

Executing a Ulana analysis:

- Once you are in the container navigate to the data folder /home/data
- 2) Once you are in the data folder, create a new directories for the analysis mkdir ulana_analysis mkdir ulana_analysis/fastq
- 3) Move the relevant fastq's into ulana_analysis/fastq cp data/barcodexx/*.fastq.gz ulana analysis/fastq
- 4) Change directory into ulana_analysis cd /home/data/ulana analysis
- 5) Unzip the the fastq files if they have a .gz file ending gunzip ./fastq/*.gz
- 6) Concatenate the fastq files into 1 fastq file cat ./fastq/*.fastq > ./samplename combined.fastq
- 7) Once you have the concatenated fastq file chose one of the following to run based on the basecalling algorithm used:
- - 8) Once the pipeline completes completes, your working directory should contain the following new directories:

9) The polished assembly is in the medaka directory and is marked:

10) The tabulated version of the annotation is in the prokka out directory and is marked:

11) A quick summary of the identification is in ropro_out and is marked

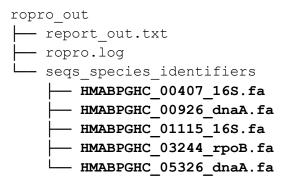
```
ropro_out

report_out.txt

ropro.log

seqs_species_identifiers

HMABPGHC_00407_16S.fa


HMABPGHC_00926_dnaA.fa

HMABPGHC_01115_16S.fa

HMABPGHC_03244_rpoB.fa

HMABPGHC_05326_dnaA.fa
```

12) The extracted identifier genes are in ropro_out/seqs_species_identifiers and are marked:

